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TWO-DIMENSIONAL SPATIAL~DISCRETIZATION
METHODS ON A LAGRANGIAN MESH

Thomas R. Hill and Richard R. Paternoster
Los Alamos National Laboratory
Los Alamos, New Mexico, U.S.A.

Methods for efficiently solving the two-dimensional multigroup transport
equation for orthogonal (x,y) or (r,z) geometries are generally well-developed.
The extension to regular triangular meshes in (x,y) and (r,z) geometries has
been done. However, some complex geometries cannot be accurately described
with these metheds. Furthermore, it is often desirable to couple neutronics
with hydrodynamics calculations. It is desirable to perform the neutronics
calculations directly on a distorted Lograngian mesh, rather than mapping the
material properties onto #n orth-zonal mceh. This paper will describe some

of the Los Alamos work on solving cthe tLransport equation on an arbitrary
Lagrangian wesh, with emphasis on the spatial differencing schemesr used.

The angular variable is treated by the standard discrete-ordinstes avproxi-
mation, using the diamornd-differeance approximaticn for curved geometyy.
Befors the calculation is begun, a large (packed) ordering array of size:
(number of spatial wesh cell x number of discrete-ordinates directions) is
computed to specify the order of sweeping the mesh cells for each direction.
This can be done in a very etficient fashion for near-spherical meshes.

By writing a conservation equation for each triangular or quadrilateral

mesh cell, and using additionai diamond-difference-like relationships, de-
pending upon the number of siaes visible, an equation for the cell-centered
angular flux can be derived. This acheme suffers from the same difficulties
as the standard diamond difference in orthogonal geometries, in addition to
other deficiencies unique to Lagrangian meshes. Schemes for fix-ups of
negative fluxes and boomerangs will be described. Two temporary trianguler
subzoning schemes will be outlined.



TWO-DIMENSIONAL SPATIAL DISCRETIZATION
METHODS ON A LAGRANGIAN MESH

INTRODUCTION

Because of the ability to model complex geometries and the occasional interest
in coupling neutronics to hydrodynamics calculations, such as in reactor

safety problems, the solution of the neutron transport equation on an arbitrary
Lagrangian mesh is sometimes desired.

In the past, this was most often done by mapping the material properties onto
an orthogontl mesh ard performing the neutronics calculation with those well-
developed methods.1'? Because of the e.pense of this mapping aud a correspond-
ing reduction in accuracy, an effort was undertaken at Los Alamos for a direct
solution of the discrete-ordinates transport equation on Lagrangian meshes.
Preceecing and paralleling this effort was the vork at Lemeil by Mordant.3'?

In describing the Los Alamos work in this paper, emphasis will be placed on

the differences becween the two approaches. primarily in the spatial dif-
ferencing scheme.

The Los Alamos method is based upon the constraints:

1. The method must be able to solve large meshes (> 10 000
mesh cells), so that a scheme efficient in core storage
is required, and

2. The method must be sble to do time dependent problems, so
that a computationally-efficient and fast scheme is required.

These two restrictions resulted in s method somewhat simpler, and certainly
far less elegant, than that of Mordaat.

TRANSPORT EQUATION
The angle and energy variubles of the two-dimensional transport equation in
(x,y) or {(r,z) geometry sre treated by the standard discrete ordinates and

multig:vup approximation,? imcluding the truncated expansion of the scattering
function in sphericul harmonics.

Using the vtandard nomenclature of TWOTRAN,? the conservation equation for the
single Lagrangian mesh cell shown in Fig. 1, for discrete-ordinates direction
Qm = (pm,nm), can be written

A
flwl * f2¢2 * f3‘“3 * fhwﬁ * ;; (am+5wm+§ ) dm"ﬁwm-h)

+oVys=Sy (1)
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flow area on i'th face of mesh cell, with

£ = >0 for outflowl
. < 0 for inflow ’

ff dxdy in (x,y)
V = mesh cell volume = ,
Jf rdrdz in (r,z)
A = mesh cell area = [ drdz in (r,z) , and
S = mesh cell source, including scattering and fission.

Equation (1) may easily be applied to triangles by setting the appropriate
fi = 0,
The curvature coefficients, ami&’ satisfy the standard recursion relation®
in (r,z) geometry, and are zero for (x,y) geometry, with the notation

= y 2 >
o am+~ + am-&‘ The step approximation in angle? is used in (r,z) geometry

for the first angle on each n level.

The diamond-difference approximation 1n angle is used

wms =2y - 'l’m_,‘ ’

so that Eq. (1) can be written

A
SV + Inflown + ;; (an+§ - um-h ) wﬂ‘%
‘” = A ———— (2‘)
oV + Outilows + 2 —- «a
\/m l'l“'k
or fur the first angle on an n-level
+
Y = 8V + Inflows (2b)

o
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SPATIAL DIFFERENCING

The conservation equation scheme of Eq. (2) is based on mesh-cell edge fluxes
(as oppcsed to a corner flux scheme). The diamond difference scheme, used so
successfully in orthogonal geometries, can easily be generalized to these
nonorthogonal Lagrangian meshes.

The number of known and unknown angular fluxes in Eq. (1) depends upon the
the orientation of the mesh cell with respect tc the discrete ordinate
direction. For a quadrilateral cell with N sides visible (N = 1,2, or 3),
there are 5-N unknown fluxes so that 5-N-1 auxiliary diamond-difference
like equations must be assumed to supplemeat the conservation Eq. (1).
These supplemenital equations and the resultant cell-center flux equation
for the five possible cases are shown in Fig. 2.

Because of the sign on the flow areas (-~ for inflow, + for outflow), the
equations for the cell-center fluxes in Fig. 2 are seen to be positive,
provided the sources are positive. These diamond-difference like equations
suffer the same defects of those in orthogonal geometries; namely, that the
diamond difference ex.rapolations can (and do) y1e1d negative fluxes. The
appropriate equations for a set-to-zero flux fixup? are detailed in Fig. 3.

Other defects exist for this diamond-difference scheme. As one side of a
quadrilateral is squeezed down tv zero, the difference equation dces not go
over to the equation for the corresponding triangle.

Moreover, a. the orientation of a mesh cell is changed from one side visible
to two sides visible to three sides visible, the difference eguations are not
continuous from onc orientation to the other, Although this is primarily

an aesthetic objection, it may only mean that quantities do not converge
monotonically with increasing S, order. In time-dependent problem, this may
introduce nonphysical jumps in ghe temporal behavior of the flux in a cell.

Although neither of these two defects exist for the siep scheme, efforts to
correct them for the diamond-difference scheme have not been successful.

For problems that are picked up from Lagrangian hydr>dyuamics, the meshes
occasionally contain boomerangs and bowties. Since boomerangs are mesh

cells with reentrant boundaries, a rigorous solution must reflect the solutioun
in the adjacent cells, destroying the explicitness of the scheme. Several

ad hoc tixups are shown in Fig. 4. Generally, the number of boomerangs in

a mesh are few, so that a crude treatment of these cells has little effect on
the overall solution. No satisfactory treatment for bowties has been devised
vet,

ALTERNATIVE DIFFERENCE SCHEMES

The step approximation in the lateral direction for one-side visible quadri-
laterals (se= Fig. 2) is obviously a crude spproximation. In order to get the
proper slope to the cell flux distribution in this lateral direction, a scheme
for this one-side visible case, bsred on Carlson's method of characteristics®
was examined. The lateral cell edge fluxes are distributed based on the



distance of the cell edge midpoints from a plane perpendicular to the beam
through the center of the cell, as diagrammed in Fig. 5. However, because of
its complicated nature and the imited improvem:nts in accuracy it offerred,
this scheme was abandoned.

After taking statistics on a number of spherical-like meshes, it was noted
that the vast majority of the cell solutions were for the two-side visible
case, ranging from 95% for exactly spherical meshes to a low of 85% for

one bighly~distorted mesh. The remaining cells solutions were roughly evenly
distributed between the other four cases (one side and three side visible
quadrilaterals, and one and two side visible triangles). Thus, impronvements
in these four latter schemes will probably only produce marginal improvments
in overall results.

Two more accurate diamoend difference-like have been examined. One is a
temporary triangular zoning scheme in which the quadrilateral is arbitrarily
divided into two triangles, as outlined in Fig. 6 for a two-side visible
case. The other vas a temporary triangular fine zoning scheme in which the
quadrilateral is divided into four triangles, as outlined in Fig. 7.

Although both of these schemes yielded some improvements in accuracy, it was
felt the improvement did not justify the additional compute costs. The only
quantity saved between iterations was the cell-rentered flux, so that the
new scattering and fission sources are only the cell-averaged values. Thus,
these crudely-approximated sources degrade the improved accuracy resulting
from a more accurate difference scheme.

THE LaMEDOC CODE

The LaMEDOC (Lagrangian Mesh Discrete Ordinates Transport Code) has been
developed at Lot Alamos to solve the discrete-ordinates transpory equation
on an arbitrary Lagrangian mesh. Much of the structure is the same as in
the TWOTRAN code.? LaMFDOC is only 1 methods testing code, with much un-
optimized coding, and not a usable production code in any sense.

In addition to the spatial differencing scheme, the second major problem not
found in orthogonal-mesh codes is how to sweep the Lagrangian mesh. For a
given discrete-ordinate directicn, the order of solving the mesh cells is not,
a priori, known. A number of iterative schemes for sweeping the mesh werc
examined. Though highly optimized, they were found to be not competitive
(except for pure ebsorbing systems) with an explicit scheme of sweeping the
mesh.

Although being computationally efficient, an explicit sweeping scheme requires
a considerable core storage overhead, namely, an ordering array of the size

of one angular flux array. This ordering array specifies the order in which
the spatiel mech is to be swept for each discrete ordinste direction. It is
computed at the start of the problem by testing the sign of the flows betwean
each mesh ceil until a (non-unique) ordering is abtained. By ussuming a

banded structure, as shown in Fig. 8, this ordering array can be computed quite
efficiently. For time-independent probleis, the overhead for computing this
ordering array is negligible. For time-dependent problems, this overhead



becomes significant. However, the ordering array from the previous time-step
can be used to compute the orderng array for the present time step fairly
e{ficiently.

LaMEDOC uses the traditional three level of iterations: inner iterations on
the within-group scatter source, outer iterations on the fission source for
eigenvalue A, and alpha iterations for the time-absorption eigenvalue a. Both
the inner and outer iterations are accelerated by a material mesh variant of
the standard coarse-mesh rebalance.?”

The o iterations are also accelerated with a group-collapsed material mesh
rebalance.® The a iterations on the multigroup transport equation can be
written as

1 2-1, £

Wt @evliddlyy *

=S¢£+i§ r* (3)

where L is the leakage operator, I a diagonal matrix of macroscopic total cross
sections, V™! is a Jdiagornal matrix of inverse group speeds, S and F are the
scattering and fission operators, and A the intermediate eigenvalue. The solu-
tion of Eq. (3) for the eigenvalue a, with A = 1, is sought. Multiplying the
fluxes Y in Eq. (3) by material-mesh dependent cebalance factors, f , and
integrating over a)! angles and energy groups and mesh cells in matérial-mesh
zone k yields a matrix equation for the eigenvalue o and eigenvector of re-
balance factors,

'FL + AB - FS] f = -a FV £ , (4)

where AB, FS, and FV are diagonal matrices

ABk { av [ dE Z.¢ '

FS

Jav [ dE vie
k

. . l
FV, i dv [ dE ~ ¢ ,

and FL is a full material-mesh flow matrix.

The 2igenvalue spectrum of Eq. (4) ranges from the dcsired largert, positive
eigenvalue to negative infinity. Thus, the sirple power iterstion used for
the outer material-mesh rebalance will not produce the desived eigenvalue.
The inverse power iteration scheme has been found to be effective in solving

Eq. (4).



Various convergence tests are used on the different levels of iterationg in
LaMEDOC. During the early iterations when a is not accurately known, it makes
little sense to converge the iterations very tightly. Consequently, LaMEDOC
uses a variable convergence precicion scheme in which the various levels of
iteration are converged to a precision givea by the ad hoc receipe:

- -2
£ =10 (1 -A) +A efinal ’

where € cinal is the desired, final convergence precision, a user-specified
parametér. For some problems with much scattering, this scheme can cause the
« eigenvalue iterations to diverge, but works well for highly-absorbing systeams.

Occasionally, it is desired to compute o eigenvalues for subcritical systems.
L=MEDOC contains an algorithm? to obtain these very difficult eigenvalues that
succeeds when other transport codes fail.

NUMERICAL RESULTS

LaMEDOC has been used successfully on a variety of problems. Good agreement
has been obtained with results from the ONETRAN® and TWOTRAN codes for problems
that can be moGaeled exactly on those codes. The defects described above in

the spatial differencing have not appeared to be a serious difficulty in any
problem yet computed. Many problems make frequent use of the negative-flux
fixup scheme. If the cell-ceantered fluxes are the only quantity examined,

the negative fluxes and the spatial osciliations of the cell-edge fluxes are
not evident,

For steady-state problems when integral quantities are desired, such as eigen-
values, absorption rates, and leakages, the crudeness of the diamond-difference
schzme appears to be no impediment to its use. In time dependent problems when
iocalized sources may be present and large spatial flux gradients may exist,
the diamond-difference scheme may prove to be inadequate.

Figure 9 shows a sgherical problea consisting of a pure 238y gphere, sur-
rounded by a beryllium reflector. The results from LaMEDOC for this problem
are shown in Table 1 for a series of spatial meshes. Even for the coarse
spatial mesh b, the eigenvalue o is in error by less than 1%.

The important parameter in comparing the computing efficiency of various
spatial differencing schemes is

T = Total CPU time
(# of groups) (# of mesh cells) (# <f directions) (# of inners) °

For this problem, LaMEDOC appears to have a T of about 15 us. This quantity
is, of course, a strong function of coding efficiency, compiler optimizatioca,
and the computing facilities software.
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FIGURE 1. Lagrangian Mesh Cell



Table 1. LaMEDOC Problem A Results

6 Groups, Sg Quadrature, £ = 10™*

CDC 7600
Mesh Total CPU Time T® o
Mesh Cells Inners S US gen/sh
a 16 465 16.26 15.1 2.1123

b 64 497 67 .64 14.8 0.8461
c 296 337 302.19 15.3 C.8544
d 1024 543 1569. 86 19.5 0.8562

a ONETRAN a (S, 20C mesh cells) = 0.8565
b T = CDC 7600 CPU Time per group per mesh cell
per direction per inner iteration



One Side Visible : ¢y known
Ve=VYs=VY Vs=2Y—-Y

_ SV - (fl—' fa)‘% + Aam“pm—llz/ Wm

T 203+, + OV + 2AGmer/e/ Wm

Ve

/ Ve

N
Two Sides Visible : 44 , Y2 known
X Vm2Y—Y:  Ve=2Y—V:
Y1 _ SV — (f~fa)¥s — ({2 + AQmV¥m-1/2/Wm
V3 V= 2f y+2fy + oV + 2A0m+1/2/ Wm
)

Three Sides Visible : ¥, , Y2 , ¥3 known
V=4V —Yi—Ye—Ya

Ye SV = (et - (ff)¥e — (s f)¥a + AdmVm-i/2/ W
_.“p" 4f, *- oV + 2A0m+1/2/Wm

Vi

FIGURE 2a. Quadrilateral Diamond Difference




One Side Visible : ¢, known
V=VYi3 = (3'\’/—"1/1)/2

Sv - (fl"fS/z"fZ/z)V’x + Aan’x'wm-l/z/""'m

'\/j:
3f3/2 + 3f3/2 + oV + 2Aam.,/z/wm

Vs Two Sides Visible : v, , Y2 known
Va=3V—-Yi—Va
Wi 8
SV - (fi—fa)¥y ~ (f—f3)¥2 + AQmVm-172/ Wm
3fy + oV + 2Aame/2/Wnm
A
FIGURE 2b. Triangle Diamond Difference




One Side Visible : 3¢, known
Suppose VY3 < 0

Set Y=v¥, = ¥ and Y3=0

Ve

v V= SV - rlvl + Aam'v/m-l/z/wm

Two Sides Visible : 9, , Y2 known

Suppose Y4 < Y3 < 0
Set Y4=0 and VY=2V—y;

Ve

SV = oy~ (f-13)¥) + ACmV¥m-1/2/ Wm
o 2¢, + oV + 2Aame1/2/ Wm

Three Sides Visible : vy, , V2, Y3 known
Suppose ¥, < 0
Ve Set ‘W.=0

- SV - f\wWi—fa¥a-Tayy + AGmV¥m-1/2/Wm
/' vs oV + EAO,.../;/W..\

FIGURE 3a. Quadrilateral Flux Fixup




/! One Side Visible : 4, Known
Vs / Suppose Y=%3; < 0
< \“" Set Y2=v¥,=0
\

~ 1
w '\p= SV - f;'W: + Aamvm-l/Z/wl’n
oV + ZAC!mﬂ/z/wm

|

v Two Sides Visible : ¥; , Y2 known
Suppose Y3 < 0
¥ Va Set ‘W:‘O
' V= SV - fWi—Te¥e + AGmVm-172/Wm
/‘ oV + 2A0me1/2/Wm
9]

FIGURE 3b. Triangle Flux Fixup




PROBLEM :

For this orientation , only 1 side vsbl
Logic thinks 2 sides vsbl (¥, and V3)
¥+« Three supplemental equations needed

Y

0
/ 1. Assume Cell Is Empty
W =Y and Y2 = Y, (=va) = V¥

2. Use Step Approximation
V=YV = V
’w _ Sv - fg'w‘ + Aam'wm_g/g,/wm
T fgtfatf, + OV + 2AQmets2/ ¥in

£2£,>0 ,f3<0 Denominator can vanish

3. Temporary Triangulation

Solve Aa (1 side vsbl) for V. , Yz . Vi
Solve Ab (2 sides vsbl) for Yo ., Vi
by assuming V=V

Set ¥ = (VJ.V.-*-\'/uV»)/V

FIGURL 4. BOOMERANG CELL FIXUPS



Instead of step scheme in lateral direction
V=t = Y

Relate ¢, , Y, to V¥ based
on d; and d,

FIGURE 5. ONE SIDE VISIBLE ALTERNATIVE



Split gquadrilateral into Aa and Ab
Solve Aa (1 side vsbl) for ¥. , VY3, Vi
Soive Ab (2 sides vsbl) for vYu , Ve

Set ¥ = (VavutVeyn)/V

FIGURE 6. Temporary Triangular Zoning



Split gquadrilateral into Aa , Ab , Ac , Ad
Solve Aa (1 side vsbl) for Ya , Ve » Ve
Solve Ab (R sides vsbl) for Y¥» , Vi
Solve Ac (1 side vsbl) for V., V¥a , Yea
Solve Ad (R sides vsbl) for vYa , Y

Set ’W = (V.’W.+Vb'wb+vc’Wc+vd/V/d)/V

FIGURE 7. Temporary Fine Triangular Zoning



FIGURE 8. BAND STRUCTURE FOR ORDERING ARRAY



Zone 1 : Core
17.46 cm. radius
Pure 20U

p = 18W% gm/cm?®

Zone 2 : Reflector
6.00 cm. thick
Pure Be
p = 185 gm/cm?

8 group Hansen—Roach Cross Sections
Se Quadrature , Po Scatter

Mesh : a. (4 sangular intervals, 2 + 2 radial intervals)
b (8, 4+4 )
c. (16 , 8+8 )
d (32, 16+18 ;
e. (64 , 32+32

FIGURE 9. LaMEDOC TEST PROBLEM A




